Biochemical and Safety Examination of Ethanol Extract of Justicia Carnae on PHZ -Produced Anaemia in Wistar Rats

K.K. Igwe¹, Ikpeazu O.V.² and I.E. Otuokere³

¹Dept of Vet. Biochem. and Animal Production, M. O. University of Agric., Umudike, Nigeria
²Dept of Biochemistry, Abia State University, Uturu, Abia State, Nigeria
³Dept of Chem., M. O. University of Agric., Umudike, Nigeria

*Corresponding author; kwigwe191@gmail.com, drikpeazu@gmail.com

The leaves of Justicia carnæ were screened for a hematological and biochemical response using serum enzyme activities in rats. Twenty-five rats were used in this research and were grouped into 5 of 5 rats each. Group 1 was a negative control group and was treated with distilled water. Groups 2 treated anaemic, 3, 4 and 5 were treatment groups and received 100, 200 and 400 mg/kg body weight of the J. carnæ extract, respectively. Anaemic was induced with Phenylhydrazine (PHZ). The rats were treated for 14 days, thereafter was sacrificed and blood collected from the heart for analysis. The effect of J. carnæ extract was checked on hematological and serum enzyme activities. All results in treatment groups were compared with the untreated anaemic group at statistical confidence p<0.05. Total leukocyte count elevated but not significant. Differential leukocyte count indicated very mild lymphopenia neutrophilia, monocytopenia, and eosinopenia. Clinical biochemical parameters, AST, ALT, and ALP showed slight decrease but not significant. Creatinine, total protein, urea, and bilirubin mildly increased as the dose of the extract increased but within normal range and so was not statistically significant. The MCV, MCH and MCHC values suggested normocytic normochromic anaemic condition. It was concluded that the extract of J. carnæ is safe to blood cells, liver, and kidney marker enzymes at doses < 400 mg/kg body weight.

Keywards: Anaemia, Blood cells, Enzymes, Justicia carnæ, Phenylhydrazine Anaemia, Blood cells.

This article is licensed under a CC BY (Creative Commons Attribution 4.0) http://creativecommons.org/licenses/by/4.0/.

Abstract

The leaves of Justicia carnæ were screened for a hematological and biochemical response using serum enzyme activities in rats. Twenty-five rats were used in this research and were grouped into 5 of 5 rats each. Group 1 was a negative control group and was treated with distilled water. Groups 2 treated anaemic, 3, 4 and 5 were treatment groups and received 100, 200 and 400 mg/kg body weight of the J. carnæ extract, respectively. Anaemic was induced with Phenylhydrazine (PHZ). The rats were treated for 14 days, thereafter was sacrificed and blood collected from the heart for analysis. The effect of J. carnæ extract was checked on hematological and serum enzyme activities. All results in treatment groups were compared with the untreated anaemic group at statistical confidence p<0.05. Total leukocyte count elevated but not significant. Differential leukocyte count indicated very mild lymphopenia neutrophilia, monocytopenia, and eosinopenia. Clinical biochemical parameters, AST, ALT, and ALP showed slight decrease but not significant. Creatinine, total protein, urea, and bilirubin mildly increased as the dose of the extract increased but within normal range and so was not statistically significant. The MCV, MCH and MCHC values suggested normocytic normochromic anaemic condition. It was concluded that the extract of J. carnæ is safe to blood cells, liver, and kidney marker enzymes at doses < 400 mg/kg body weight.

Keywards: Anaemia, Blood cells, Enzymes, Justicia carnæ, Phenylhydrazine Anaemia, Blood cells.

This article is licensed under a CC BY (Creative Commons Attribution 4.0) http://creativecommons.org/licenses/by/4.0/.

The leaves of Justicia carnæ were screened for a hematological and biochemical response using serum enzyme activities in rats. Twenty-five rats were used in this research and were grouped into 5 of 5 rats each. Group 1 was a negative control group and was treated with distilled water. Groups 2 treated anaemic, 3, 4 and 5 were treatment groups and received 100, 200 and 400 mg/kg body weight of the J. carnæ extract, respectively. Anaemic was induced with Phenylhydrazine (PHZ). The rats were treated for 14 days, thereafter was sacrificed and blood collected from the heart for analysis. The effect of J. carnæ extract was checked on hematological and serum enzyme activities. All results in treatment groups were compared with the untreated anaemic group at statistical confidence p<0.05. Total leukocyte count elevated but not significant. Differential leukocyte count indicated very mild lymphopenia neutrophilia, monocytopenia, and eosinopenia. Clinical biochemical parameters, AST, ALT, and ALP showed slight decrease but not significant. Creatinine, total protein, urea, and bilirubin mildly increased as the dose of the extract increased but within normal range and so was not statistically significant. The MCV, MCH and MCHC values suggested normocytic normochromic anaemic condition. It was concluded that the extract of J. carnæ is safe to blood cells, liver, and kidney marker enzymes at doses < 400 mg/kg body weight.

Keywards: Anaemia, Blood cells, Enzymes, Justicia carnæ, Phenylhydrazine Anaemia, Blood cells.

This article is licensed under a CC BY (Creative Commons Attribution 4.0) http://creativecommons.org/licenses/by/4.0/.
Introduction

Plants have beneficial properties because they contain phytochemical compounds (1) and GCMS analysis has shown that phytochemicals are made up of primary and secondary metabolites that can protect the plants, human and animals against diseases (2)(3)(4). GC-MS analysis to identify phytochemicals present in Justicia carnae leaves was done by (5). Justicia of family, Acanthacea consists of about 600 species including herbs and shrubs, and are found plenty in Africa, (6) (7). Justicia carnae is a flowering plant abundantly distributed in different parts of Africa. Grown around homes and act as a fence and can be propagated from stem cutting (8).

The Igbo tribe in Nigeria calls the plant ‘Ogwu obara’ literally meaning drug for blood production.(9) reported its use in the control of inflammation, respiratory tract infection, gastrointestinal disorders, diabetes, diarrhoea, and liver diseases. It also possesses cardioprotective, antitumour, and antiviral activities(10), antioxidant activity (11).

Anaemia is decreased below the normal range of red blood cells (RBCs), packed red cell volume (PCV) or haemoglobin concentration (Hb), in the blood. It is a sign of a disease and not a disease. It has three major categories of which include: hypoproliferation, maturation defects, and hemolysis/blood loss. It is a hidden epidemic worldwide and can have serious consequences if left untreated. The use of Phenylhydrazine (PHZ) and compounds related to it were used as an antipyretic agent and demonstrated toxicity to RBC on red blood cells (12). This compound was, however, found to be useful in experimental models, hence an approved method of inducing haemolytic anemia for the study haematinic properties of new agents, erythropoietin regenerative response of plant materials through clinical, pathological, and morphological studies (13) (14).

Phenylhydrazine administration has been shown to cause haematotoxicity which leads to haemolytic anaemia by altering iron metabolism, activating, and interferes with the binding of erythropoietin on its receptors and the formation of Heinz bodies in RBC as a side effect,(15).

AST and ALT elevation in conditions of hepatocyte damage in the inflammatory condition of the liver, hypoxic states, hepatotoxicity by toxicants, trauma, and some plant extracts, (16). Liver ALP elevation also in hepatocyte and biliary epithelial damage. They could also be ALP elevation in osteoblast, intestinal epithelial, and corticosteroid stimulation when used for treatment(17) (18).

Hyperproteinaemia is associated with dehydration occasioned by vomiting, diarrhoea, impaired renal concentration ability, excessive sweating or decreased water intake,(19). Elevated urea production is associated with intestinal haemorrhage, increased dietary urea or increased protein catabolism, (20). Elevated creatinine occurs in pathological processes that cause a decrease in glomerular filtration rate which could be pre-renal, renal or post renal, (21).

Hyperbilirubinaemia occur in diseases associated with haemolysis of blood as seen in babesiosis, anaplasmosis, trypanosomiasis, snake bite and some plant toxicants,(22).

We designed this research to examine the safety of J. carnae extract after recovering from anaemia by examining its effect on blood cells; biochemical liver enzyme markers ALT, AST, and ALP. Kidney markers urea, creatinine, bilirubin, and total protein. To investigate the haematinic and haematopoetic potential of leaf extract of Justicia carnae in phenyl-hydrazine-induced haemolytic anemia in albino Wistar rats.

Materials and methods

Plant Materials

Fresh leaves of J. carnae were collected from the University environment in
Umudike, Nigeria, and was identified by Prof. M. C. Dike at the Taxonomy section of College of Natural Resources and Environmental Management of the University.

Preparation of Plant Extract
The identified leaves of *J. carnae* were dried under shade for 10 days and grinned to a coarse powder using a manual grinder (Corona-Landers C 1A SA). Extraction was done by the Soxhlet method described by (23) and 35g of coarse powdered sample was introduced into the extraction chamber using ethanol as solvent. Throughout the extraction time of 48 hrs the temperature was kept at 70°C in the chamber. The extract was concentrated in an oven at 30°C and the dried extract weighed and kept in a labelled sterile specimen bottle for the work. Different doses of 100, 200 and 400 mg/kg body weight were prepared and administered to rats in groups 2, 3, and 4 respectively. These doses were calculated from a stock solution dissolved in distilled water.

Haematology and Biochemical Investigation
For Haematological screening, PCV and differential counts were measured by the micro-haematocrit method as described by(24). Haemoglobin concentrations was determined by cyanomethemoglobin method, Kachmar (25).

Using RBC, PCV and (Hb), the mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC) were calculated using standard formulae (26) (27) (28) (29).

A biochemical investigation was performed using ELISA reagent kits. The measure included alkaline phosphatase (ALP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST), determined by the method of (16). Using serum enzyme levels to determine liver and kidney state (17). Urea by(20) and Creatinine by (21). Total protein was determined by the Biuret method as described by (19). Samples were analyzed immediately to avoid artifactual changes (30).

Experimental Animals
Adult albino rats were purchased from University Farm. Approval was obtained from the College of Veterinary Medicine of the University in line with the guidelines for the care and use of laboratory animals provided by the National Research Council (31). The rats were acclimatized and fed *ad libitum.*

Induction of Anaemia by Phenylhydrazine (PHZ)
This was done according to the modified method described by (32). Haemolytic anaemia was induced in the rats intraperitoneally with 2.5% phenyl hydrazine hydrochloride (Fisher Scientific Company, New Jersey, USA) at a dose of 30 mg/kg body weight. The anaemia was maintained by the administration of 15 mg/kg body weight of 2.5% phenylhydrazine
hydrochloride at interval of 3 days, for the duration of the experiment.

Experimental design

Twenty-five rats were used for the research, they were grouped into 5 of 5 rats each. Group 1 was the normal control group and was administered distilled water orally. Groups 2 was the untreated anaemic group, 3, 4 and 5 were the treatment groups that received 100, 200 and 400 mg/kg body weight of the *J. carnae* extract respectively orally by intubation. The rats were treated for 14 days, thereafter they were sacrificed and blood collected from the heart for analysis. The effect of *J. carnae* extract was checked on haematological parameters and serum enzyme activities.

Statistical analysis

Analysis of statistical data was computed using Statistical Package for Social Sciences (SPSS) version 20. Values were expressed as mean ± Standard Error of Mean (SEM) and were further subjected to one - way analysis of variance (ANOVA) to compare doses with untreated anaemic group. Duncan post-hoc test was used to separate the mean that showed significant difference. The statistical confidence was set at p<0.05.

Results and discussion

The result of Fig 1 shows the values presented as means ± SEM (standard error of mean) of RBC, PCV, Hb, and TWBC (Total White Blood Cell) at significant difference p<0.05. Treatment was 100, 200, 400 mg/kg compared to untreated anaemic group.

There was a progressive increase in values of Hb, PCV, and RBC when the dose of the extract increased compared to untreated anaemic group.

Hb (g/dl) 16.5 ± 0.39, 17.3 ± 0.39 and 18.5 ± 0.39, when compared to the untreated anaemic group 14.2 ± 0.39,

PCV (%) 37.7 ± 0.29, 40.00 ±0.29 and 43. ± 0.29, when compared to the untreated anaemic group 28.25 ±0.29.

RBC (X 10^6 mm3) 6.0 ± 0.21, 6.5 ± 0.21 and 7.00 ± 0.21, when compared to the untreated anaemic group 4.25 ± 0.21

The increase in values of Hb, PCV, and RBC was statistically significant at p<0.05.

TWBC (X10^3 mm3) 10.00 ± 0.37, 9.34 ± 0.37 and 8.15 ± 0.37, when compared to the untreated anaemic group 10.95 ± 0.37,

The mild decrease in values of TWBC recorded as a dose of extract increased were not statistically significant at p<0.05.
Research Article

Vol. 13 Issue:1, (2020)
ISSN: P-1999:6527 E-2707:0603

Figure 2: shown MCV, MCH, and MCHC values of Wistar rats.

Fig 2 shows the values presented as means ± SEM of MCV, MCH, and MCHC at significant difference p<0.05. Treatment was 100, 200, 400 mg/kg compared to untreated anaemic group.

MCV(fl): 62.79 ± 0.18, 61.71 ± 0.18 and 61.90 ± 0.18 when compared to the untreated anaemic group 66.50 ± 0.18,

MCH (pg) 27.42 ± 0.44, 26.72 ± 0.44 and 26.57 ± 0.44, when compared to the untreated anaemic group 31.19 ± 0.44,

MCHC (g/dl) 43.72 ± 0.73, 43.24 ± 0.73 and 42.92 ± 0.73, when compared to the untreated anaemic group 50.51 ± 0.73,

Figure 3: shown Differential leukocyte count of Wistar rats.

The graph in Fig 3 represents the values of differential blood count of leukocytes as mean ± SEM at significant difference p<0.05. Treatment was 100, 200, 400 mg/kg compared to untreated anaemic group.

Lymphocytes (%) 55.50 ± 1.00, 55.50 ± 1.00 and 58.75 ± 0.76, when compared to the untreated anaemic group 58.75 ± 1.00,

Neutrophils (%) 37.25 ± 1.17, 38.00 ± 1.17 and 29.50 ± 1.17, when compared to untreated anaemic group 32.25 ± 1.17,

Monocytes (%) 4.75 ± 0.27, 5.00 ± 0.27 and 5.25 ± 0.27, when compared untreated anaemic group 6.50 ± 0.27,

Eosinophils (%) 2.25 ± 0.25, 2.50 ± 0.25 and 2.25 ± 0.25, when compared to untreated anaemic group 3.00 ± 0.25,

Basophils (%) 0.00 ± 0.00, 0.25 ±0.05 and 0.00 ± 0.00, when compared to untreated anaemic group 0.0 ± 0.00

No statistically significant difference at p<0.05 and all values of leukocytes fall within the normal reference range.

Figure 4: shown Total protein, urea, creatinine, and bilirubin of Wistar rats.

The graph in Fig 4 represents the value of serum biochemistry of total protein, urea, creatinine, and bilirubin. The value is represented as mean ± SEM at p<0.05. Treatment was 100, 200, 400 mg/kg compared to untreated anaemic group.

Total protein: 6.48 ± 0.24, 7.8539 ±1.2 and
8.19 ± 0.24, when compared to the untreated anaemic group 5 ± 0.24, (Ref range 4.0-8.0) Radostits et al.,(2000)

Urea: 22.27 ± 1.2 , 17.39 ± 1.2 and 12.37 ± 1.2, when compared to the untreated anaemic group 24.28 ± 1.2, (Ref range 10-30)

Creatinine: 0.97 ± 0.03, 0.90 ± 0.03 and 0.79 ± 0.03, when compared to the untreated anaemic group 1.08 ± 0.03, (Ref range 0.6-1.6)

Bilirubin: 0.61 ± 0.03, 0.54 ± 0.03 and 0.50 ± 0.03, when compared to the untreated anaemic group 0.67 ± 0.03, (Ref range 0-10)

No statistically significant difference at p<0.05 and all values fall within the normal reference range.

The result in Fig 1 showed that plant extract significantly (p<0.05) restored to their normal ranges, of the (Hb), PCV, and RBC which experimentally were depleted by Phenylhydrazine when compared with the anaemic untreated group. This haematinic effect of this plant extract occurred in a dose-dependent manner, which implies that increasing the dose of the extract from 100 to 400, significantly, and increased the haematinic effect of the extract. These values remained significantly low in the untreated rats. However, the induction with phenyl-hydrazine (PHZ) did not significantly alter the MCV but caused increased values of MCH, MCHC, and TWBC as observed in Fig 1. Erythrocytes that have a normal size or volume (normal MCV) are called normocytic, whereas high and low mean values indicate macrocytic and microcytic respectively. Erythrocytes with normal of haemoglobin concentration (MCHC) are normochromic, whereas, abnormally high and low mean values indicate hyperchro- mic and hypochromic conditions respectively, though there is no hyperchromic condition. So the MCV, MCH and MCHC values in this work were normal suggesting normocytic normochromic anaemic condition

The result presented in Fig 3 showed that J. canae extract-treated groups progressively returned the TP value to mean values compared with the normal value in a dose-dependent manner. The liver and kidney biomarkers which were significantly elevated by the PHZ agent as shown in the untreated rats Fig 4 and 5, were gradually brought back to normal reference range comparable with the normal control rats.
following treatment with the plant extract. Studies have shown that intravascular hemolysis in any condition may damage the liver and other vascular organs (34) (35), apart from hemolysis induced liver injury. The result in Fig 3 showed that liver enzymes were restored to the normal reference range. The mechanism of action of *J. carnae* may solely depend on the restoration of these hematological parameters thereby preventing damage to the liver and/or restoration of injured hepatocytes indicating that *J. carnae* extract could be hepatoprotective against hemolytic anemia and/or phenylhydrazine induced hepatotoxicity in rats.

Our research agrees with (36) that *J. carnae* can revive anaemic condition. In this work also, the extract of *J. carnae* is safe to liver and kidney cells at dose <400 mg/kg body weight. Rats showed significant recovery at a higher dose of *J. carnae*. The significant recovery as shown in Fig 1-3 could be due to the administration of *J. carnae* extract, and not by the natural physiological compensation of the bone marrow.

Conclusion

Therefore, it can be concluded that *J. carnae* extract increased the PCV, Hb and RBC levels and caused a reduction in AST, ALT, and ALT with the restoration of hepatocytes after phenylhydrazine induced haemolytic anaemia. This suggests that the extract may be beneficial in the treatment of haemolytic anaemia induced by phenylhydrazine or haemolysis as a result of infectious agent.

References

30. Ihedioha JI, Onwubuche RC. Artifactual changes in PCV, hemoglobin concentration, and cell counts in bovine, caprine, and porcine blood stored at room and refrigerator temperatures. Veterinary clinical pathology. 2007 Mar;36(1):60-3.

32. Ihedioha JI, Onwubuche RC. Artifactual changes in PCV, hemoglobin concentration, and cell counts in bovine, caprine, and porcine blood stored at room and refrigerator temperatures. Veterinary clinical pathology. 2007 Mar;36(1):60-3.

33. Ihedioha JI, Onwubuche RC. Artifactual changes in PCV, hemoglobin concentration, and cell counts in bovine, caprine, and porcine blood stored at room and refrigerator temperatures. Veterinary clinical pathology. 2007 Mar;36(1):60-3.

